797 research outputs found

    A stochastic model for the stepwise motion in actomyosin dynamics

    Full text link
    A jump-diffusion process is proposed to describe the displacements performed by single myosin heads along actin filaments during the rising phases. The process consists of the superposition of a Wiener and a jump process, with jumps originated by sequences of Poisson-distributed energy-supplying pulses. In a previous paper, the amplitude of the jumps was described by a mixture of two Gaussian distributions. To embody the effects of ATP hydrolysis, we now refine such a model by assuming that the jumps' amplitude is described by a mixture of three Gaussian distributions. This model has been inspired by the experimental data of T. Yanagida and his co-workers concerning observations at single molecule processes level.Comment: 9 pages, 4 figure

    Wintertime transport processes in the Gulf of Naples investigated by HF radar measurements of surface currents

    Get PDF
    Transport processes play a fundamental role in regulating the water renewal in coastal systems. The Gulf of Naples (Southern Tyrrhenian Sea) is a highly urbanised area, receiving pollutant discharges and terrestrial inputs that may reside inside the basin. For this reason, understanding the processes governing coast-offshore transport is of paramount importance for the welfare of the ecosystem and the sustainable exploitation of environmental resources. In this work, we analyse the wind-driven transport over lags of three days in winter reconstructing the basin scale surface circulation by means of High-Frequency radars and evaluating its dependence on wind circulation. Simulations of particle exchange between a coastal and an offshore area have been carried out, outlining the strong relationship between particle fate and circulation structures. Results are interpreted in terms of residence times and possible aggregative areas in the Gulf of Naples

    ORBIT AND FORMATION CONTROL FOR LOW-EARTH-ORBIT GRAVIMETRY DRAG-FREE SATELLITES

    Get PDF
    The paper outlines orbit and formation control of a long-distance (>100 km) two-satellite formation for the Earth gravity monitoring. Modeling and control design follows the Embedded Model Control methodology. We distinguishe be-tween orbit and formation control: orbit control applies to a single satellite and performs altitude control. Formation control is formulated as a control capable of altitude and distance control at the same time. The satellites being placed in a low Earth orbit, orbit and formation control employ the measurements of a global navigation system. Formation control is imposed by long-distance laser interferometry, which is the key instrument together with GOCE-class accelerometers for gravity measurement. Orbit and formation control are low-frequency control systems in charge of cancelling the bias and drift of the residual drag-free accelerations. Drag-free control is the core of orbit/formation control since it makes the formation to fly drag-free only subject to gravity. Drag-free is demanded by the low-Earth orbit and by the accelerometer systematic errors. Drag-free control being required to have a bandwidth close to 1 Hz, is designed as the inner loop of the formation control, but formation control must not destroy drag-free performance, which is obtained by restricting formation control to be effective only below orbital frequency. A control of this kind appears to be original: an appropriate orbit and formation dynamics is derived, discussed and compared with the classical Hill-Clohessy-Wiltshire equations. The derived dynamics is the first step to build the embedded model which is sampled at the orbit rate. Embedded model derivation is explained only for the orbit control, and briefly mentioned for the formation control. Control design is explained in some details, pointing out reference generation, state predictor, control law and main design steps. Simulated results are provided. Drag free results are compared to GOCE data

    The control challenges for the Next Generation Gravity Mission

    Get PDF
    Several activities are on going in preparation of a "Next Generation Gravity Mission" (NGGM) aimed at measuring the temporal variations of the Earth gravity field over a long time span with high spatial resolution and high temporal resolution. The most appropriate measurement technique identified for such mission is the "Low-Low Satellite-Satellite Tracking" in which two satellites flying in loose formation in a low Earth orbit act as proof masses immersed in the Earth gravity field. The distance variation between the satellites and the non-gravitational accelerations of the satellites, measured respectively by a laser interferometer and by ultra-sensitive accelerometers, are the fundamental observables from which the Earth gravitational field is obtained. The control system for the NGGM must fulfil the challenging combination of requirements for the orbit and formation maintenance, attitude stabilisation, drag compensation and microradian laser beam pointing. This paper presents the assessment and the preliminary design of the NGGM control system, performed by Thales Alenia Space Italia and Politecnico di Torino for the European Space Agency

    Wind direction data from a coastal HF radar system in the gulf of naples (central mediterranean sea)

    Get PDF
    Results on the accuracy of SeaSonde High Frequency (HF) radar wind direction measurements in the Gulf of Naples (Southern Tyrrhenian Sea, Central Mediterranean Sea) are here presented. The investigation was carried out for a winter period (2 February-6 March) and for one summer month (August) of the reference year 2009. HF radar measurements were compared with in situ recordings from a weather station and with model data, with the aim of resolving both small scale and large scale dynamics. The analysis of the overall performance of the HF radar system in the Gulf of Naples shows that the data are reliable when the wind speed exceeds a 5 m/s threshold. Despite such a limitation, this study confirms the potentialities of these systems as monitoring platforms in coastal areas and suggests further efforts towards their improvement

    Switching Time Statistics for Driven Neuron Models: Analytic Expressions versus Numerics

    Full text link
    Analytical expressions are put forward to investigate the forced spiking activity of abstract neuron models such as the driven leaky integrate-and-fire (LIF) model. The method is valid in a wide parameter regime beyond the restraining limits of weak driving (linear response) and/or weak noise. The novel approximation is based on a discrete state Markovian modeling of the full dynamics with time-dependent rates. The scheme yields very good agreement with numerical Langevin and Fokker-Planck simulations of the full non-stationary dynamics for both, the first-passage time statistics and the interspike interval (residence time) distributions.Comment: 4 pages, 4 figures, RevTeX4 used, final versio

    Author correction to: Structure and distribution of an unrecognized interstitium in human tissues

    Get PDF
    © 2018 The Author(s). The Supplementary Figure file that accompanies this Article contains an error in Supplementary Figure S1, where the Small Intestine CD34 panel was duplicated from the Gallbladder CD34 panel. The correct Figure S1 appears below as Figure 1. (Figure Presented)

    Ab initio calculations of electron affinity and ionization potential of carbon nanotubes

    Full text link
    By combining ab initio all-electron localized orbital and pseudopotential plane-wave approaches we report on calculations of the electron affinity (EA) and the ionization potential (IP) of (5, 5) and (7, 0) single-wall carbon nanotubes. The role played by finite-size effects and nanotube termination has been analysed by comparing several hydrogen-passivated and not passivated nanotube segments. The dependence of the EA and IP on both the quantum confinement effect, due to the nanotube finite length, and the charge accumulation on the edges, is studied in detail. Also, the EA and IP are compared to the energies of the lowest unoccupied and highest occupied states, respectively, upon increasing the nanotube length. We report a slow convergence with respect to the number of atoms. The effect of nanotube packing in arrays on the electronic properties is eventually elucidated as a function of the intertube distance
    • …
    corecore